JPEG Image Compression

Rahul Garg, Varun Gulshan

December 6, 2005

JPEG Image Compression

Basic Data Redundancies

- Interpixel Redundancy
- Psychovisual Redundancy
- Coding Redundancy

A Bit of Information Theory

Entropy of a source : Average amount of information obtained by observing a single source output.

$$H(z) = -\sum_{i=1}^{N} P(a_i) log P(a_i)$$

where $(a_1, a_2, ..., a_N)$ forms the set of possible outputs. *Shannon's First Theorem* states that

$$min(L_{avg}) = H(z)$$

where L_{avq} is average code word length per source symbol.

Encoding Process

General Steps in Image Compression

Steps in JPEG Image Compression

Handling Redundancies

- Interpixel Redundancy: Captured by the DCT coefficients(more zeros in coeffs).
- Psychovisual Redundancy: Captured by the high frequency DCT coefficients.
- Coding Redundancy: Captured by variable length codes.

The DCT transform

- Break up image into 8x8 image blocks.
- Change the basis for representing the block image.

The $\left(u,v\right)^{th}$ DCT coefficient is given by the dot product

$$dct(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} image(x,y) * h(x,y,u,v)$$

where

$$h(x, y, u, v) = \alpha(u)\alpha(v)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

Information packing in DCT coeffs

DCT vs FT

Comparison of packing for a one dimensional test signal: [8, 16, 32, 40, 48, 56, 64]

DCT

Effect of truncation

Result on images

FT

Quantization

- Equivalent to truncating coefficients corresponding to high frequency.
- Lossy step in JPEG compression.
- Quantization values specified in a 8x8 Q-table.
- Table based on heuristically determined perceptual importance of each coefficient.
- Image quality can be controlled by scaling Q table.

Original Image													
52 63 62 63 67 79 85 85 87	55 59 58 61 65 71 79	61 66 68 71 68 60 64 69	66 90 113 122 104 70 59 68	70 109 144 154 126 77 55 65	61 85 104 106 88 68 61 76	64 69 66 70 68 58 65 78	73 72 73 69 70 75 83 94						
DCT Transform													
-414 6 -46 -49 11 -10 -3 -1	-29 -21 8 12 -8 1 -1 -1	-62 -62 77 34 -12 3 1 0	25 8 -26 -14 -2 -3 0 -3	55 12 -30 -10 0 1 0	-20 -7 10 6 1 0 -4 0	-1 -6 1 -5 2 -1	2 -5 1 2 0 -3 0						
	Quantization												
-20	5 -3 1 -2 3 1 4 1 1 0 0 0 0 0 0 0	-6 -4 5 2 0 0 0 0	2 0 -1 0 0 0 0	2 0 -1 0 0 0 0	-1 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0						

16	11	10	16	24	40	51	61				
12	12	14	19	26	58	60	55				
14	13	16	24	40	57	69	56				
14	17	22	29	51	87	80	62				
18	22	37	56	68	109	103	77				
24	35	55	64	81	104	113	92				
49	64	78	87	103	121	120	101				
72	92	95	98	112	100	103	99				
Standard JPEG Q-table											

JPEG Image Compression

Coding of the DCT coefficients

Done in two parts

- The DC coefficient (u, v) = (0, 0) is coded using difference encoding.
- The AC coefficients(the rest of the coefficients) are run length encoded and then huffman coded.

Coding the DC coefficients

Step 1: Take difference with the DC coefficient of the previous block.

Step 2: Differences are encoded using variable length codes. These variable length codes are standardized for jpeg.

DC coeffs	-869	\rightarrow	-861	\rightarrow	-876	\rightarrow	-933	\rightarrow	-867	\rightarrow	-845	\rightarrow	-863	
Differences		8		-15		-57		66		22		-18		

Codes for differences are looked up from a table.

Coding the AC coefficients

Step 1: Convert the AC coefficients into a sequence by traversing the coefficients in a zig-zag way.

Zig-zag parse clusters the zeros together.

Example zig zag parse

Step 2: Non zero AC coefficients are divided into categories.

Category	AC Value								
1 2 3 4	-1, -3, -2, -74, -158,	1 2, 3 47 815							
10	-1023512,	5121023							

Figure 1: AC categories

The sequence is then run length coded.

Original AC coeff	-26 2	-3 0	1 0	-3 -1	-2 2	-6 0	2 0	-4 0	1 0	-4 0	1 -1	1 -1	5 EOB	0
						\Downarrow								
Category codes	5 2	2	1 -	2 1	2 2	3 -	2	3 -	1 -	3 -	1 1	1 1	3 EOB	-
						\Downarrow								
Run length codes	0/5 1/2	0/2	0/1	0/2 2/1	0/2 0/2	0/3	0/2	0/3	0/1	0/3	0/1 5/1	0/1 0/1	0/3 EOB	

Run length codes form our symbol set for coding. They are coded using a standardized table. Hence, code for each non zero AC coefficient is composed of a basecode (corresponding to runlength/category) and a code corresponding to offset in the category.

Standard tables vs Optimized tables

JPEG Variants

- Progressive JPEG : Image stored in series of scans with image becoming sharper with each scan.
- Lossless JPEG : Utilizes Predictive Differential Coding method.
- JPEG 2000 : Latest version of JPEG relying on wavelet transformation instead of DCT.

References

- Digital Image Processing by R.C. Gonzalez and R.E. Woods
- http://www.jpeg.org
- http://cnx.rice.edu
- http://www.datacompression.info
- http://www.cs.sfu.ca
- http://www.wikipedia.org